
Recent Publications
Zhou B, Claflin KE, Flippo KH, Sullivan AI, Asghari A, Tadinada SM, Jensen-Cody SO, Abel T, Potthoff MJ. Central FGF21 Production Regulates Memory but Not Peripheral Metabolism. Cell Reports. 2022 Aug 23;40(8):111239. doi: 10.1016/j.celrep.2022.111239. https://pubmed.ncbi.nlm.nih.gov/36001982/
Claflin KE, Sullivan AI, Naber MC, Flippo KH, Morgan DA, Neff TJ, Jensen-Cody SO, Zhu Z, Zingman LV, Rahmouni K, Potthoff MJ. Pharmacological FGF21 Signals to Glutamatergic Neurons to Enhance Leptin Action and Lower Body Weight Through Increases in Energy Expenditure During Obesity. Molecular Metabolism. 2022 Aug 6;101564. doi: 10.1016/j.molmet.2022.101564. https://pubmed.ncbi.nlm.nih.gov/35944896/
Sullivan AI, Potthoff MJ, Flippo KH. Tany-seq: Integrated Analysis of the Mouse Tanycyte Transcriptome. Cells. 2022 May 10.
Flippo KH, Trammell SAJ, Gillum MP, Aklan I, Perez MB, Yavuz Y, Smith NK, Jensen-Cody SO, Zhou B, Claflin KE, Beierschmitt A, Fink-Jensen A, Knop FK, Palmour RM, Grueter BA, Atasoy D, Potthoff MJ. FGF21 suppresses alcohol consumption through an amygdalo-striatal circuit. Cell Metab. 2022 Feb 1;34(2):317-328.e6. doi: 10.1016/j.cmet.2021.12.024. PMID: 35108517.
Conditional gene targeting using UCP1-Cre mice directly targets the central nervous system beyond thermogenic adipose tissues. Claflin KE, Flippo KH, Sullivan AI, Naber MC, Zhou B, Neff TJ, Jensen-Cody SO, Potthoff MJ. Mol Metab. 2021 Nov 26:101405. doi: 10.1016/j.molmet.2021.101405. Epub ahead of print. PMID: 34844020.
ADH5-mediated NO bioactivity maintains metabolic homeostasis in brown adipose tissue. Sebag SC, Zhang Z, Qian Q, Li M, Zhu Z, Harata M, Li W, Zingman LV, Liu L, Lira VA, Potthoff MJ, Bartelt A, Yang L. Cell Rep. 2021 Nov 16;37(7):110003. doi: 10.1016/j.celrep.2021.110003. PMID: 34788615; PMCID: PMC8640996.
Hepatic AKT orchestrates adipose tissue thermogenesis via FGF21-dependent and -independent mechanisms. Sostre-Colón J, Uehara K, Garcia Whitlock AE, Gavin MJ, Ishibashi J, Potthoff MJ, Seale P, Titchenell PM. Cell Rep. 2021 May 18;35(7):109128. doi: 10.1016/j.celrep.2021.109128. PMID: 34010646; PMCID: PMC8167823.
OPA1 deletion in brown adipose tissue improves thermoregulation and systemic metabolism via FGF21. Elife. Pereira RO, Marti A, Olvera AC, Tadinada SM, Bjorkman SH, Weatherford ET, Morgan DA, Westphal M, Patel PH, Kirby AK, Hewezi R, Bùi Trân W, García-Peña LM, Souvenir RA, Mittal M, Adams CM, Rahmouni K, Potthoff MJ, Abel ED. 2021 May 4;10:e66519. doi: 10.7554/eLife.66519. PMID: 33944779; PMCID: PMC8128440.
FGF21 is required for the metabolic benefits of IKKε/TBK1 inhibition. Reilly SM, Abu-Odeh M, Ameka M, DeLuca JH, Naber MC, Dadpey B, Ebadat N, Gomez AV, Peng X, Poirier B, Walk E, Potthoff MJ, Saltiel AR. J Clin Invest. 2021 May 17;131(10):e145546. doi: 10.1172/JCI145546. PMID: 33822771; PMCID: PMC8121507.
Top Publications
FGF21 Signals to Glutamatergic Neurons in the Ventromedial Hypothalamus to Suppress Carbohydrate Intake. Jensen-Cody SO, Flippo KH, Claflin KE, Yavuz Y, Sapouckey SA, Walters GC, Usachev YM, Atasoy D, Gillum MP, Potthoff MJ. Cell Metab. 2020 Jun 30:S1550-4131(20)30309-0.
FGF21 and metabolic disease in 2016: A new frontier in FGF21 biology. Potthoff MJ. Nat Rev Endocrinol. 2017 Feb;13(2):74-76.
Metabolic Messengers: FGF21. Nat Metabolism 2021. Flippo, K.H., Potthoff, MJ. 3, 309–317.
FGF21 Mediates Endocrine Control of Simple Sugar Intake and Sweet Taste Preference by the Liver. von Holstein-Rathlou, S., BonDurant, L., Peltekian, L., Naber, M. C., Yin, T. C., Claflin, K. E., Ibarra Urizar, A., Madsen, A. N., Ratner, C., Holst, B., Karstoft, K., Vandenbeuch, A., Anderson, C. B., Cassell, M. D., Thompson, A. P., Solomon, T. P., Rahmouni, K., Kinnamon, S. C., Pieper, A. A., Gillum, M. P. & Potthoff, M. J. Cell Metab. 23(2):335-343, 2016.
BonDurant LD, Ameka M, Naber MC, Markan KR, Idiga S, Ornitz DM, Potthoff MJ. FGF21 Regulates Metabolism through Adipose-Dependent and -Independent Mechanisms. Cell Metabolism. Apr 4;25(4):935-944.e4, 2017.

All Publications
Peer reviewed articles
- Montgomery RL, Davis CA, Potthoff MJ, Haberland M, Fielitz J, Qi X, Hill JA, Richardson JA, Olson EN.: Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev. 21(14):1790-1802, 2007. PMCID: PMC1920173. http://genesdev.cshlp.org/content/21/14/1790
- Potthoff MJ, Wu H, Arnold MA, Shelton JM, Backs J, McAnally J, Richardson JA, Bassel-Duby R, Olson EN.: Histone deacetylase degradation and MEF2 activation promote the formation of slow-twitch myofibers. J Clin Invest. 117(9):2459-2467, 2007. PMCID: PMC1957540 Comment in J Clin Invest. 117(9):2388-2391, 2007. https://pubmed.ncbi.nlm.nih.gov/17786239/
- Potthoff MJ, Arnold MA, McAnally J, Richardson JA, Bassel-Duby R, Olson EN.: Regulation of skeletal muscle sarcomere integrity and postnatal muscle function by Mef2c. Mol Cell Biol. 27(23):8143-8151, 2007. PMCID: PMC2169182. https://pubmed.ncbi.nlm.nih.gov/17875930/
- Satapati S, He T, Inagaki T, Potthoff M, Merritt ME, Esser V, Mangelsdorf DJ, Kliewer SA, Browning JD, Burgess SC.: Partial resistance to peroxisome proliferator-activated receptor-alpha agonists in ZDF rats is associated with defective hepatic mitochondrial metabolism. Diabetes. 57(8):2012-2021, 2008. PMCID: PMC2494699. https://pubmed.ncbi.nlm.nih.gov/18469201/
- Montgomery RL, Potthoff MJ, Haberland M, Qi X, Matsuzaki S, Humphries KM, Richardson JA, Bassel- Duby R, Olson EN.: Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J Clin Invest. 118(11):3588-3597, 2008. PMCID: PMC2556240. https://pubmed.ncbi.nlm.nih.gov/18830415/
- Potthoff MJ, Inagaki T, Satapati S, Ding X, He T, Goetz R, Mohammadi M, Finck BN, Mangelsdorf DJ, Kliewer SA, Burgess SC.: FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. PNAS. 106(26):10853-10858, 2009. PMCID: PMC2705613. https://pubmed.ncbi.nlm.nih.gov/19541642/
- Sunny N, Satapati S, Fu X, He T, Medibeigi R, Spring-Robinson C, Duarte J, Potthoff MJ, Browning JD, Burgess SC.: Progressive Adaptation of Hepatic Ketogenesis in Mice Fed a High Fat Diet. Am J Physiol Endocrinol Metab. 298(6):E1226-E1235, 2010. PMICD: PMC2886525. https://pubmed.ncbi.nlm.nih.gov/20233938/
- Moresi V, Williams AH, Meadows E, Flynn JM, Potthoff MJ, McAnally J, Shelton JM, Backs J, Klein WH, Richardson JA, Bassel-Duby R, Olson EN.: Myogenin and Class II HDACs Control Neurogenic Muscle Atrophy by Inducing E3 Ubiquitin Ligases. Cell. 143(1):35-45, 2010. PMCID: PMC2982779. https://pubmed.ncbi.nlm.nih.gov/20887891/
- Potthoff MJ, Boney-Montoya J, Choi M, Satapati S, He T, Suino-Powell K, Xu H.E., Gerard RD, Finck BN, Burgess SC, Mangelsdorf DJ, Kliewer SA.: FGF15/19 Regulates Hepatic Glucose Metabolism By Inhibiting the CREB-PGC-1α Pathway. Cell Metabolism. 13(6):729-738, 2011. PMCID: PMC3131185. https://pubmed.ncbi.nlm.nih.gov/21641554/
- Zhang Y, Xie Y, Berglund ED, Coate KC, He TT, Katafuchi T, Xiao G, Potthoff MJ, Wei W, Wan Y, Yu RT, Evans RM, Kliewer SA, Mangelsdorf DJ.: The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. elife. 1:e00065. doi: 10.7554/3Life.00065, 2012 PMCID: PMC3466591. https://pubmed.ncbi.nlm.nih.gov/23066506/
- Potthoff, MJ, Potts, A., He, T, Duarte, JA, Taussig, R, Mangelsdorf, DJ, Kliewer, SA, Burgess, SC: Colesevelam Suppresses Hepatic Glycogenolysis by TGR5-mediated Induction of GLP-1 Action in DIO Mice. American Journal of Physiology: Gastrointestinal and Liver Physiology. 304(4):G371-G380, 2013. PMCID: PMC3566618. https://pubmed.ncbi.nlm.nih.gov/23257920/
- Markan, KR, Naber, MC, Ameka, MK, Anderegg, MD, Mangelsdorf, DJ, Kliewer, SA, Mohammadi, M, Potthoff, MJ: Circulating FGF21 is Liver Derived and Enhances Glucose Uptake During Refeeding and Overfeeding. Diabetes. 63(12):4057-4063, 2014. PMCID: PMC4238010. https://pubmed.ncbi.nlm.nih.gov/25008183/
- McGlashon JM, Gorecki MC, Kozlowski AE, Thirnbeck CK, Markan KR, Leslie KL, Kotas ME, Potthoff MJ, Richerson GB, Gillum MP: Central serotonergic neurons activate and recruit thermogenic brown and beige fat and regulate glucose and lipid homeostasis. Cell Metabolism. 21(5):692-705, 2015. https://pubmed.ncbi.nlm.nih.gov/25955206/
- Gray LR, Sultana MR, Rauckhorst AJ, Oonthonpan L, Tompkins SC, Sharma A, Fu X, Miao R, Pewa AD, Brown KS, Lane EE, Dohlman A, Zepeda-Orozco D, Xie J, Rutter J, Norris AW, Cox JE, Burgess SC, Potthoff MJ, Taylor EB. Hepatic Mitochondrial Pyruvate Carrier 1 is Required for Efficient Regulation of Gluconeogenesis and Whole-body Glucose Homeostasis. Cell Metabolism. Oct 6;22(4):669-81, 2015. https://pubmed.ncbi.nlm.nih.gov/26344103/
- von Holstein-Rathlou, S, BonDurant, LD, Peltekian, L, Naber, MC, Yin, TC, Claflin, KE, Ibarra Urizar, A, Madsen, AN, Ratner, C, Holst, B, Karstoft, K, Vandenbeuch, A, Anderson, CB, Cassell, MD, Thompson, AP, Solomon, TP, Rahmouni, K, Kinnamon, SC, Pieper, AA, Gillum, MP*, and Potthoff, MJ*. FGF21 Mediates Endocrine Control of Simple Sugar Intake and Sweet Taste Preference by the Liver. Cell Metabolism. Feb. 9;23(2):335-343, 2016. (* = Co-corresponding authors). https://pubmed.ncbi.nlm.nih.gov/26724858/
- Littlejohn NK, Keen HL, Weidemann BJ, Claflin KE, Tobin KV, Markan KR, Park S, Naber MC, Gourronc FA, Pearson NA, Liu X, Morgan DA, Klingelhutz AJ, Potthoff MJ, Rahmouni K, Sigmund CD, Grobe JL. Suppression of resting metabolism by the angiotensin AT2 receptor. Cell Reports. 2016. Aug 9;16(6):1548-60. https://pubmed.ncbi.nlm.nih.gov/27477281/
- Kolb R, Phan L, Borcherding N, Liu Y, Yuan F, Janowski AM, Xie Q, Markan KR, Li W, Potthoff MJ, Fuentes-Mattei E, Ellies LG, Knudson M, Lee M, Yeung SJ, Cassel SL, Sutterwala FS, Zhang W. Obesity-associated NLRC4 inflammasome activation drives breast cancer progression. Nature Communications. 2016. Oct 6;7:13007. https://pubmed.ncbi.nlm.nih.gov/27708283/
- Markan KR. Naber MC, Small SM, Peltekian L, Kessler RL, Potthoff MJ. FGF21 Resistance is not mediated by downregulation of beta-klotho in white adipose tissue is. Molecular Metabolism. 2017 Mar 27;6(6):602-610. https://pubmed.ncbi.nlm.nih.gov/28580290/
- BonDurant LD, Ameka M, Naber MC, Markan KR, Idiga S, Ornitz DM, Potthoff MJ. FGF21 Regulates Metabolism through Adipose-Dependent and -Independent Mechanisms. Cell Metabolism. Apr 4;25(4):935-944.e4, 2017. https://pubmed.ncbi.nlm.nih.gov/28380381/
- Soberg S, Sandholt CH, Jespersen NZ, Toft U, Madsen AL, von Holstein-Rathlou S, Grevengoed TJ, Christensen KB, Bredie W, Potthoff MJ, Solomon T, Scheele C, Linneberg A, Jorgensen T, Pedersen O, Hansen T, Gillum MP, Grarup N. FGF21 Is a Sugar-Induced Hormone Associated with Sweet Intake and Preference in Humans. Cell Metabolism. May 2;25(5):1045-1053, 2017. https://pubmed.ncbi.nlm.nih.gov/28467924/
- Pereira RO, Tadinada SM, Zasadny FM, Oliveira KJ, Pires KMP, Olvera A, Jeffers J, Souvenir R, Mcglauflin R, Seei A, Funari T, Sesaki H, Potthoff MJ, Adams CM, Anderson EJ, Abel ED. OPA1 deficiency promotes secretion of FGF21 from muscle that prevents obesity and insulin resistance. EMBO J. Jul 14;36(14):2126-2145, 2017. https://pubmed.ncbi.nlm.nih.gov/28607005/
- Cushing EM, Chi X, Sylvers KL, Shetty SK, Potthoff MJ, Davies BSJ. Angiopoietin-like 4 directs uptake of dietary fat away from adipose during fasting. Molecular Metabolism. Jun 19;6(8):809-818, 2017. https://pubmed.ncbi.nlm.nih.gov/28752045/
- Klingelhutz AJ, Gourronc FA, Chaly A, Wadkins DA, Burand AJ, Markan KR, Idiga SO, Wu M, Potthoff MJ, Ankrum JA. Scaffold-free generation of uniform adipose spheroids for metabolism research and drug discovery. Sci Rep. Jan 11;8(1):523, 2018. https://pubmed.ncbi.nlm.nih.gov/29323267/
- Zhang P, Kuang H, He Y, Idiga SO, Li S, Chen Z, Yang Z, Cai X, Zhang K, Potthoff MJ, Xu Y, Lin JD. NRG1-Fc improves metabolic health via dual hepatic and central action. JCI Insight. 2018 Mar 8;3(5). https://pubmed.ncbi.nlm.nih.gov/29515030/
- Sandgren JA, Deng G, Linggonegoro DW, Scroggins SM, Perschbacher KJ, Nair AR, Nishimura TE, Zhang SY, Agbor LN, Wu J, Keen HL, Naber MC, Pearson NA, Zimmerman KA, Weiss RM, Bowdler NC, Usachev YM, Santillan DA, Potthoff MJ, Pierce GL, Gibson-Corley KN, Sigmund CD, Santillan MK, Grobe JL. Arginine vasopressin infusion is sufficient to model clinical features of preeclampsia in mice. JCI Insight. 2018 Oct 4;3(19). https://pubmed.ncbi.nlm.nih.gov/30282823/
- Ameka M, Markan KR, Morgan DA, BonDurant LD, Idiga SO, Naber MC, Zhu Z, Zingman LV, Grobe JL, Rahmouni K, Potthoff MJ. Liver Derived FGF21 Maintains Core Body Temperature During Acute Cold Exposure. Sci Rep. 2019 Jan 24;9(1):630. https://pubmed.ncbi.nlm.nih.gov/30679672/
- Markan KR, Boland LK, King-McAlpin AQ, Claflin KE, Leaman MP, Kemerling MK, Stonewall MM, Amendt BA, Ankrum JA, Potthoff MJ. Adipose TBX1 Regulates β-Adrenergic Sensitivity in Subcutaneous Adipose Tissue and Thermogenic Capacity In Vivo. Molecular Metabolism. 2020. Jun;36:100965. https://pubmed.ncbi.nlm.nih.gov/32240964/
- Sapouckey SA, Morselli LL, Deng G, Patil C, Balapattabi K, Oliveira V, Claflin KE, Gomez J, Pearson NA, Potthoff MJ, Gibson-Corley KN, Sigmund CD, Grobe JL. Exploration of cardiometabolic and developmental significance of angiotensinogen expression by cells expressing the leptin receptor or Agouti-related peptide. Am J Physiol Regul Integr Comp Physiol. 2020. Mar 18. https://pubmed.ncbi.nlm.nih.gov/32186897/
- Gansemer ER, McCommis KS, Martino M, King-McAlpin AQ, Potthoff MJ, Finck BN, Taylor EB, Rutkowski DT. NADPH and Glutamine Redox Link TCA Cycle Activity to Endoplasmic Reticulum Homeostasis. iScience. 2020 May 22;23(5):101116. https://pubmed.ncbi.nlm.nih.gov/32417402/
- Jensen-Cody, SO, Flippo, KH, Claflin, KE, Yavuz, Y Walters, GC, Usachev, YM, Atasoy, D, Gillum, MP, Potthoff, MJ: FGF21 Signals to Glutamatergic Neurons in the Ventromedial Hypothalamus to Suppress Carbohydrate Intake. Cell Metabolism. 2020 Aug. 4; 32:1-14.
- Nayak MK, Ghatge M, Flora GD, Dhanesha N, Jain M, Markan KR, Potthoff MJ, Lentz SR, Chauhan AK. Metabolic enzyme pyruvate kinase M2 regulates platelet function and arterial thrombosis. Blood. 2020 Oct 7. doi: 10.1182/blood.2020007140. https://pubmed.ncbi.nlm.nih.gov/33027814/
- Flippo KH, Jensen-Cody SO, Claflin KE, Potthoff MJ. FGF21 signaling in glutamatergic neurons is required for weight loss associated with dietary protein dilution. Sci Rep. 2020 Nov 11;10(1):19521. https://pubmed.ncbi.nlm.nih.gov/33177640/
- Reilly SM, Abu-Odeh M, Ameka M, DeLuca JH, Naber MC, Dadpey B, Ebadat N, Gomez AV, Peng X, Poirier B, Walk E, Potthoff MJ, Saltiel AR. FGF21 is required for the metabolic benefits of IKKε/TBK1 inhibition. J Clin Invest. 2021 Apr 6:145546. doi: 10.1172/JCI145546. https://pubmed.ncbi.nlm.nih.gov/33822771/
- Pereira RO, Marti A, Olvera AC, Tadinada SM, Bjorkman SH, Weatherford ET, Morgan DA, Westphal M, Patel PH, Kirby AK, Hewezi R, Bùi Trần W, García-Peña LM, Souvenir RA, Mittal M, Adams CM, Rahmouni K, Potthoff MJ, Abel ED. OPA1 deletion in brown adipose tissue Improves thermoregulation and systemic metabolism via FGF21. Elife. 2021 May 4;10:e66519. doi: 10.7554/eLife.66519. https://pubmed.ncbi.nlm.nih.gov/33944779/
- Sostre-Colón J, Uehara K, Garcia Whitlock AE, Gavin MJ, Ishibashi J, Potthoff MJ, Seale P, Titchenell PM. Hepatic AKT orchestrates adipose tissue thermogenesis via FGF21-dependent and -independent mechanisms. Cell Rep. 2021 May 18;35(7):109128. doi: 10.1016/j.celrep.2021.109128.https://pubmed.ncbi.nlm.nih.gov/34010646/
- Sobreira DR, Joslin AC, Zhang Q, Williamson I, Hansen GT, Farris KM, Sakabe NJ, Sinnott-Armstrong N, Bozek G, Jensen-Cody SO, Flippo KH, Ober C, Bickmore WA, Potthoff M, Chen M, Claussnitzer M, Aneas I, Nóbrega, MA. Extensive pleiotropism and allelic heterogeneity mediate metabolic effects of IRX3 and IRX5. Science. 2021 Jun 4;372(6546):1085-1091. doi: 10.1126/science.abf1008. https://pubmed.ncbi.nlm.nih.gov/34083488/
- Chu Y, Tian L, Herz H, Linden B, Morgan DA, Naber MC, Potthoff M, Rahmouni K, Mokadem M. Gastric Bypass Sensitizes Sympathetic and Thermogenic Activity of Brown Adipose Tissue to Cold Exposure. Obes Surg. 2021 Jul 15. https://pubmed.ncbi.nlm.nih.gov/34264434/
Review Articles
- Potthoff MJ, Olson EN. MEF2: A central regulator of diverse developmental programs. Development. 134(23):4131-4140, 2007. PMID: 17959722. https://pubmed.ncbi.nlm.nih.gov/17959722/
- Potthoff MJ, Olson EN, Bassel-Duby R. Skeletal muscle remodeling. Curr Opin Rheumatol. 19(6):542-549, 2007. PMID: 17917533. https://pubmed.ncbi.nlm.nih.gov/17917533/
- Potthoff MJ, Kliewer SA, Mangelsdorf DJ. Endocrine fibroblast growth factors 15/19 and 21: From feast to famine. Genes Dev. 26(4):312-324, 2012. PMCID: PMC3289879. https://pubmed.ncbi.nlm.nih.gov/22302876/
- Markan KR, Potthoff MJ. Metabolic fibroblast growth factors (FGFs): Mediators of energy homeostasis. Semin Cell Dev Biol. Sep 30., 2015. PMCID: 26428296. https://pubmed.ncbi.nlm.nih.gov/26428296/
- BonDurant LD, Potthoff MJ. Fibroblast Growth Factor 21: A Versatile Regulator of Metabolic Homeostasis. Annu Rev Nutr. 2018. Aug 21;38:173-196. https://pubmed.ncbi.nlm.nih.gov/29727594/
- Jensen-Cody SO, Potthoff MJ. Hepatokines and Metabolism: Deciphering Communication from the Liver. Molecular Metabolism. 2020. Dec 4:101138. doi: 10.1016/j.molmet.2020.101138. https://pubmed.ncbi.nlm.nih.gov/33285302/
- Flippo, K.H., Potthoff, MJ. Metabolic Messengers: FGF21. Nat Metabolism 2021. 3, 309–317. https://www.nature.com/articles/s42255-021-00354-2#citeas.
Invited Commentaries
- Potthoff, M.J.*, Finck, B.N.* Head Over Hepatocytes for FGF21. Diabetes. 63(12):4013-4015, 2014. PMCID: PMC4237992 (* = Co-corresponding authors). https://pubmed.ncbi.nlm.nih.gov/25414019/
- Gillum, M.P., Potthoff, M.J. FAP Finds FGF21 Easy to Digest. Biochem J. 473(9):1125-7, 2016. https://pubmed.ncbi.nlm.nih.gov/27118870/
- Potthoff, M.J. FGF21 and metabolic disease in 2016: A new frontier in FGF21 biology. Nat. Rev. Endocrinology. 2017 Feb;13(2):74-76. https://pubmed.ncbi.nlm.nih.gov/27983736/
- Flippo, K.H., Potthoff, M.J. Chronicles of an FGF chimera: The odyssey continues. Ebiomedicine. 2019 Oct 28. https://pubmed.ncbi.nlm.nih.gov/31672336/